β₂-GLYCOPROTEIN 1

ATG01-10 β2-Glycoprotein 1 1.0 mg

Description of the Product

Purified from human plasma that has been tested and found to be negative for HIV, HCV and HBsAg antibodies. After coating onto ELISA plates the product will bind autoantibodies to β_2 -glycoprotein 1.

Purity: The β_2 -glycoprotein 1 autoantigen (54 kDa) is more than 95% pure, as assessed by SDS gel electrophoresis.

Storage: Store at -65°C or below (long term). Avoid repeated freezing and thawing. Mix thoroughly before use.

Clinical and Biochemical Data

Autoantibodies directed to negatively charged phospholipids, in particular cardiolipin, have been detected in the serum of patients with systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS)¹. APS is characterised by venous and arterial thrombosis, recurrent spontaneous abortions and thrombocytopenia. It is now known that a serum cofactor, β_2 -glycoprotein 1, is required for the binding of cardiolipin by autoantibodies in the sera of patients with APS²⁻⁴. By contrast, anticardiolipin antibodies from patients with infectious diseases (in particular, syphilis) do not require this cofactor⁵.

 β_2 -Glycoprotein 1, also known as apolipoprotein H, is a relatively abundant serum protein (present at a concentration of about 0.2 mg/ml) that may play a role in coagulation⁶. It has been shown to bind to platelets⁷, mitochondria⁸ and negatively charged substances such as heparin⁹, DNA¹⁰, dextran sulphate¹¹ and negatively charged phospholipids¹². β_2 -Glycoprotein 1 is known to be very heat stable². On SDS-electrophoresis the protein displays an apparent m.wt. of 45 kDa under non-reducing conditions and 55kDa upon reduction. Although isoelectric focussing has been reported¹³ to reveal genetic polymorphisms of β_2 -glycoprotein 1, the multiple bands seen by this method may be due to different amounts of sialic acid¹⁴.

The amino acid sequence of β_2 -glycoprotein 1 reveals a 326 amino acid protein of about 36 kDa^{15}. This sequence has been confirmed by sequencing the protein's cDNA^{16}. The fact that the protein migrates on SDS-electrophoresis with a much larger apparent m.wt. suggests that it is extensively glycosylated β_2 -Glycoprotein 1 has five consensus repeats, referred to as "Sushi domains", characteristic of the complement control protein family^{17,18}. The use of purified β_2 -glycoprotein 1 for the detection of autoantibodies in huan serum has been demonstrated by several authors¹⁹⁻³⁴.

Methodology

The following is an ELISA procedure that can be used to detect anti β_2 -glycoprotein 1 antibodies in human serum using the ATG01 purified antigen:

1. Dilute the purified antigen to 2.0-4.0 μg/ml in PBS (10 mM Potassium phosphate, pH 7.4, 0.15 M NaCl).

2. Coat ELISA plates with 100 μ l of diluted antigen per well. Cover and incubate overnight at +4 °C.

3. Empty the plate and remove excess liquid by tapping on a paper towel.

4. Block excess protein binding sites by adding 200 μI PBS containing 1% BSA per well. Incubate at room temperature for 3 hours.

5. Empty plates and apply 100 μl of serum samples diluted 1:100 in PBS / 1% BSA / 1% casein / 0.02% Tween^ $^{\odot}$ 20. Incubate at room temperature for 1 hour.

6. Empty plates and add 200 μl PBS/ 0.02% Tween $^{\otimes}$ 20 per well. Incubate 5 minutes then empty plates. Repeat this step twice.

7. Apply 100 μl anti-human IgG-enzyme conjugate (horseradish peroxidase or alkaline phosphatase) diluted in PBS / 1% BSA / 1% casein / 0.02% Tween $^{\odot}$ 20 per well and incubate for 1 hour.

8. Repeat step 6.

9. Add enzyme substrate and stop the reaction when appropriate.

10. Read absorbance in an ELISA spectrophotometer.

Note: The type of ELISA plate^{28,35} and the use of Tween $^{\circ}$ 20 in the wash buffer³⁶⁻³⁸ are the subjects of some discussion.

References

- 1. Hughes, G.R.V. (1994) Lancet 342, 341
- 2. Galli, M. et al. (1990) Lancet 335, 1544
- 3. Matsuura, E. et al. (1990) Lancet 336, 177
- 4. McNeil, H.P. et al. (1991) Proc. Natl. Acad. Sci. USA 87, 4120
- 5. Matsuura, E. et al. (1992) J. Immunol. 148, 3885
- 6. Schousboe, I. (1985) Blood 66, 1086
- 7. Schousboe, I. (1980) Thromb. Res. 19, 225
- 8. Schousboe, I. (1979) Biochim. Biophys. Acta 579, 396
- Polz et al. (1980) Int. J. Biochem. 11, 265
 Kroll, J. et al. (1976) Biochim. Biophys. Acta 434, 490
 - 11. Schousboe, I. & Rasmussen, M.S. (1988) Int. J. Biochem. 20, 787
 - 12. Wurm, H. (1984) Int. J. Biochem. 16, 511
 - 13. Richter, A. & Cleve, H. (1988) Electrophoresis **9**, 317
 - 14. Gries, A. et al. (1989) Biochem. J. 260, 531
 - 15. Lozier, J. et al. (1984) Proc. Natl. Acad. Sci. USA 81, 3640
 - 16. Steinkasserer, A. et al. (1991) Biochem. J. 277, 387
 - 17. Kato, H. & Enjyoji, K. (1991) Biochem. USA 30, 11687
 - 18. Ichinose, A. et al. (1990) J. Biol. Chem. 265, 13411
 - 19. Amiral, J. et al. (1994) Haemostasis 24, 191
- 20. Arvieux, J. et al. (1991) J. Immunol. Methods 143, 223
- 21. Cabral, A.R. et al. (1992) J. Autoimmunity 5, 787
- 22. El-Kadi, H.S. et al. (1995) J. Rheumatol. 22, 2233
- 23. Erickson, E.N. et al. (1996) Clin. Chem. 42, 1116
- 24. Gharavi, A.E. et al. (1993) J. Lab. Clin. Med. 122, 426
- 25. Hanly, J.G. et al. (1995) J. Rheumatol. 22, 1091
- 26. Hunt, J. & Krilis, S. (1994) J. Immunol. 152, 653
- 27. Katano, K. et al. (1996) Human Reprod. 11, 509
- 28. Keil, L.B. et al. (1995) Biotechnol. Appl. Biochem. 22, 305
- 29. Martinuzzo, M.E. et al. (1995) Brit. J. Haemotol. 89, 397
- 30. Matsuura, E. et al. (1992) J. Immunol. 148, 3885
- 31. McNally, T. et al. (1995) Brit. J. Haematol. 91, 471
- 32. Nomura, M. et al. (1995) Rheumatol. Int. 15, 1
- 33. Pengo, V. et al. (1995) Thrombosis & Haemostasis 73, 29
- 34. Roubey, R.A.S. et al. (1995) J. Immunol. 154, 954
- 35. Matsuura, E. et al. (1994) J. Exp. Med. 179, 457
- 36. Arvieux, J. & Roussel, B. (1994) Brit. J. Haemotol. 88, 443
- 37. Matsuda, J. et al. (1993) Brit. J. Haemotol. 85, 799
- 38. Cheng, H.W. (1996) J. Immunol. Methods 191, 87

NOTE: **No patented technology** has been used by **AroTec** during the preparation of this product.

